27 research outputs found

    Exciting with quantum light

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica de la Materia Condensada. Fecha de lectura: 22-11-2019A two-level system—the idealization of an atom with only two energy levels—is the most fundamental quantum object. As such, it has long been at the forefront of the research in Quantum Optics: its emission spectrum is simply a Lorentzian distribution, and the light it produces is the most quantum that can be. The temporal distribution of the photon emission displays a perfect antibunching, meaning that such a system will never emit two (or more) photons simultaneously, which is consistent with the intuition that the two-level system can only sustain a single excitation at any given time. Although these two properties have been known for decades, it was not until the advent of the Theory of Frequency-filtered and Time-resolved Correlations that it was observed that the perfect antibunching is not the end of the story: the correlations between photons possess an underlying structure, which is unveiled when one retains the information about the color of the photons. This is a consequence of the Heisenberg uncertainty principle: measuring perfect antibunching implies an absolute knowledge about the time at which the photons have been emitted, which in turn implies an absolute uncertainty on their energy. Thus, keeping some information about the frequency of the emitted photons affects the correlations between them. This means that a two-level system can be turned into a versatile source of quantum light, providing light with a large breadth of correlation types well beyond simply antibunching. Furthermore, when the two-level system is driven coherently in the so-called Mollow regime (in which the two-level system becomes dressed by the laser and the emission line is split into three), the correlations blossom: one can find every type of statistics—from antibunching to super-bunching—provided that one measures the photons emitted at the adequate frequency window of the triplet. In fact, the process of filtering the emission at the frequencies corresponding to N-photon transitions is the idea behind the Bundler, a source of light whose emission is always in bundles of exactly N photons. The versatility of the correlations decking the emitted light motivates the topic of this Dissertation, in which I focus on the theoretical study of the behaviour that arises when physical systems are driven with quantum light, i.e., with light that cannot be described through the classical theory of electromagnetism. As the canon of excitation used in the literature is restricted to classical sources, namely lasers and thermal reservoirs, our description starts with the most fundamental objects that can be considered as the optical targets: a harmonic oscillator (which represents the field for non-interacting bosonic particles) and a two-level system (which in turn represents the field for fermionic particles). We describe which regions of the Harmonic oscillator’s Hilbert space can be accessed by driving the harmonic oscillator with the light emitted by a two-level system, i.e., which quantum steady states can be realized. Analogously, we find that the quality of the single-photon emission from a two-level system can be enhanced when it is driven by quantum light. Once the advantages of using quantum, rather than classical, sources of light are demonstrated with the fundamental optical targets, we turn to the quantum excitation of more involved systems, such as the strong coupling between a harmonic oscillator and either a two-level system—whose description is made through the Jaynes-Cummings model—or a nonlinear harmonic oscillator—which can be realized in systems of, e.g., exciton-polaritons. Here we find that the statistical versatility of the light emitted by the Mollow triplet allows to perform Quantum Spectroscopy on these systems, thus gaining knowledge of its internal structure and dynamics, and in particular to probe their interactions with the least possible amount of particles: two. In the process of exciting with quantum light, we are called to further examine the source itself. In fact, there is even the need to revisit the concept of a single-photon source, for which we propose more robust criterion than g(2). We also turn to toy-models of the Bundler so as to use it effectively as an optical source. We can then xix study the advantages that one gets and shortcomings that one faces when using this source of light to drive all the systems considered on excitation with the emission of a two-level system. Finally, we go from the continuous to the pulsed regime of excitation, which is of higher interest for applications and comes with its own set of fundamental questions

    Quasichiral interactions between quantum emitters at the nanoscale

    Get PDF
    This is an accepted manuscript of an article published by American Physical Society in Physical Review Letters on 07/02/2019, available online: https://doi.org/10.1103/PhysRevLett.122.057401 The accepted version of the publication may differ from the final published version.We present a combined classical and quantum electrodynamics description of the coupling between two circularly polarized quantum emitters held above a metal surface supporting surface plasmons. Depending on their position and their natural frequency, the emitter-emitter interactions evolve from being reciprocal to nonreciprocal, which makes the system a highly tunable platform for chiral coupling at the nanoscale. By relaxing the stringent material and geometrical constraints for chirality, we explore the interplay between coherent and dissipative coupling mechanisms in the system. Thus, we reveal a quasichiral regime in which its quantum optical properties are governed by its subradiant state, giving rise to extremely sharp spectral features and strong photon correlations

    Loss of antibunching

    Full text link
    We describe some of the main external mechanisms that lead to a loss of antibunching, i.e., that spoil the character of a given quantum light to deliver its photons separated from each other. Namely, we consider contamination by noise, a time jitter in the photon detection, and the effect of frequency filtering (or detection with finite bandwidth). The formalism to describe time jitter is derived and connected to the already existing one for frequency filtering. The emission from a two-level system under both incoherent and coherent driving is taken as a particular case of special interest. The coherent case is further separated into its vanishing- (Heitler) and high- (Mollow) driving regimes. We provide analytical solutions which, in the case of filtering, reveal an unsuspected structure in the transitions from perfect antibunching to thermal (incoherent case) or uncorrelated (coherent case) emission. The experimental observations of these basic and fundamental transitions would provide additional compelling evidence of the correctness and importance of the theory of frequency-resolved photon correlation

    Impact of detuning and dephasing on a laser-corrected subnatural-linewidth single-photon source

    Get PDF
    The elastic scattering peak of a resonantly driven two-level system has been argued to provide narrow-linewidth antibunched photons. Although independent measurements of spectral width on the one hand and antibunching, on the other hand, do seem to show that this is the case, a joint measurement reveals that only one or the other of these attributes can be realised in the direct emission. We discuss a scheme which interferes the emission with a laser to produce simultaneously single photons of subnatural linewidth. In particular, we consider the effect of dephasing and of the detuning between the driving laser and/or the detector with the emitter. We find that our scheme brings such considerable improvement as compared to the standard schemes as to make it the best single-photon source in terms of all-order multi-photon suppression by several orders of magnitudes. While the scheme is particularly fragile to dephasing, its superiority holds even for subnatural-linewidth emission down to a third of the radiative lifetime

    The Origin of Antibunching in Resonance Fluorescence

    Full text link
    Epitaxial quantum dots have emerged as one of the best single-photon sources, not only for applications in photonic quantum technologies but also for testing fundamental properties of quantum optics. One intriguing observation in this area is the scattering of photons with subnatural linewidth from a two-level system under resonant continuous wave excitation. In particular, an open question is whether these subnatural linewidth photons exhibit simultaneously antibunching as an evidence of single-photon emission. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. First, we independently confirm single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our experimental work is consistent with recent theoretical findings, that explain antibunching from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state.Comment: 8 pages, 4 figure
    corecore